Combinatorial search problems in mathematics, e.g. in nite geometry, are notoriously hard; a state-of-the-art backtracking search algorithm can easily take months to solve a single problem. ere is clearly demand for parallel combinatorial search algorithms scaling to hundreds of cores and beyond. However, backtracking combinatorial searches are challenging to parallelise due to their sensitivity to search order and due to the their irregularly shaped search trees. Moreover, scaling parallel search to hundreds of cores generally requires highly specialist parallel programming expertise.is paper proposes a generic scalable framework for solving hard combinatorial problems. Key elements are distributed memory task parallelism (to achieve scale), work stealing (to cope with irregularity), and generic algorithmic skeletons for combinatorial search (to reduce the parallelism expertise required). We outline two implementations: a mature Haskell Tree Search Library (HTSL) based around algorithmic skeletons and a prototype C++ Tree Search Library (CTSL) that uses hand coded applications.Experiments on maximum clique problems and on a problem in nite geometry, the search for spreads in H(4, 2 2 ), show that (1) CTSL consistently outperforms HTSL on sequential runs, and (2) both libraries scale to 200 cores, e.g. speeding up spreads search by a factor of 81 (HTSL) and 60 (CTSL), respectively. is demonstrates the potential of our generic framework for scaling parallel combinatorial search to large distributed memory platforms.