We introduce a mission design for an interstellar expedition to nearby earth-like exoplanets, which our analysis determined to be Tau Ceti and Gliese 667C, at the time of analysis in 2013. We review the research problems in propulsion and AGI that must be addressed to launch an AI guided interstellar probe within 100 years. We propose a new semi-autonomous agent approach for intelligent control of the spacecraft. We introduce the concept of a semi-autonomous agent as having built-in safety guarantees that constrain operation. An autonomous agent case study is presented formulating the objective, constraints, AGI implementation of the agent based on Solomono's Alpha architecture, and adding specicity. We discuss the training required to reach human-level and trans-sapient levels of intelligence which corresponds to an entire crew of AI experts specialized in elds such as astrophysics, astromechanics, astrobiology, quantum physics, computer science, molecular biology, and so forth. We project the feasibility of the human-level AI technology based on empirical ndings in neuroscience, and nd that it should be feasible by 2030. We analyze Solomono's innity point hypothesis in light of Koomey's law about energy eciency of computing and nd that the trends in 2013 indicated an early singularity by 2035, which implies that we might encounter physical bottlenecks which will decelerate computing technology improvements signicantly. We recommend thus year 2040 for launching the probe by which date other required technologies will have been developed. We discuss the scenario of a virtual crew made of brain simulations, which is a bio-information based AI approach. We detail the subsystems of command and control, communication, scientic instrumentation, power, propulsion, navigation, and shielding. We propose a variation of ICAN-II/AIMStar propulsion which uses a positron source instead of anti-protons to initiate micro-fusion reactions. We combine the positron initiated fusion pulse propulsion scheme with a miniaturized version of the Daedelus fusion thruster obtaining high performance. We derive two mission proles one for fusion pulse propulsion, and the yet hypothetical Q-Thruster. Fusion thruster requires 132.2 years for Tau Ceti, and 233.2 years for Gliese 667C, while Q-Thruster takes only 42.3 years for Tau Ceti, and 62.5 years for Gliese 667C. We also discuss extended roles for intelligent interstellar probes such as self-reproduction via nanotechnology, refueling, construction, robotic bodies, and transmission of brain simulations.