We discuss a novel framework for physical theories that is based on the principles of locality and operationalism. It generalizes and unifies previous frameworks, including the standard formulation of quantum theory, the convex operational framework and Segal's approach to quantum field theory. It is capable of encoding both classical and quantum (field) theories, implements spacetime locality in a manifest way and contains the complete modern notion of measurement in the quantum case. Its mathematical content can be condensed into a set of axioms that are similar to those of Atiyah and Segal. This is supplemented by two basic rules for extracting probabilities or expectation values for measurement processes. The framework, called the positive formalism, is derived in three completely different ways. One derivation is from first principles, one starts with classical field theory and one with quantum field theory. The latter derivation arose previously in the programme of the general boundary formulation of quantum theory. As in the convex operational framework, the difference between classical and quantum theories essentially arises from certain partially ordered vector spaces being either lattices or anti-lattices. If we add the ad hoc ingredient of imposing anti-lattice structures, the derivation from first principles may be seen as a reconstruction of quantum theory. Among other things, the positive formalism suggests a statistical approach to classical field theories with dynamical metric, provides a common ground for quantum information theory and quantum field theory, introduces a notion of local measurement into quantum field theory, and suggests a new perspective on quantum gravity by removing the incompatibility with general relativistic principles. The positive formalism as a framework for quantum theory is in conflict with various interpretations or modifications of quantum theory, including physical collapse theories, manyworlds interpretations, and non-local hidden variable theories.