BackgroundProstate cancer (PCa) and benign prostate hyperplasia (BPH) are commonly encountered diseases in elderly males. The two diseases have some commonalities: both are growth depend on hormone and respond to antiandrogen therapy. Some studies have shown that genetic factors are responsible for the occurrences of both diseases. There may be a correlation between BPH and PCa. MethodsThe GEO database can help determine the differentially expressed genes (DEGs) between BPH and PCa. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were utilized to find pathways in which the DEGs were enriched. The STRING database can provide a protein–protein interaction (PPI) network, and Cytoscape software can find hub genes in PPI network. GEPIA can be used to analyze expression and survival data for hub genes. R software was used to progress regression analysis, decision curve analysis and built nomograph. UALCAN and The Human Protein Atlas was utilized to test the results. Finally, we made clinical and cell experiments to verify the results.ResultsSixty DEGs, consisting of 15 up-regulated and 45 down-regulated genes, were found based on the GEO database. Using Cytoscape, we found 7 hub gene in the PPI network. The hub gene expression was tested on TCGA database. Except CXCR4, all hub genes expressed differently between tumor and normal samples. Meanwhile, all hub genes exclude CXCR4 has diagnostic value in predicting PCa and their mutations are risk factors leading to PCa. The expression of CSRP1, MYL9 and SNAI2 changed in different tumor stage. CSRP1 and MYH11 could affect the disease-free survival (DFS). The same results reflected in different database. In addition, we also chose three hub gene, MYC, MYL9, and SNAI2, to validate their functions in clinical specimens and cells.ConclusionThese identified hub genes can help us to understand the process and mechanism by which BPH develops into PCa and provide achievable targets for predicting which BPH patients may later develop PCa.