Sub-micron particles are ubiquitous in the indoor environment, especially during wildfire smoke episodes, and have a higher impact on human health than larger particles. Conventional fibrous air filters installed in heating, ventilation, and air conditioning (HVAC) systems play an important role in controlling indoor air quality by removing various air pollutants, including particulate matter (PM). However, it is evident that the removal efficiency of wildfire smoke PM and its effect on filter performance is significantly under-studied. This study delves into the size-specific removal efficiency of pine needle smoke, a representative of wildfire smoke and emissions. We test an array of filter media with minimum efficiency reporting values (MERV) spanning 11–15. Both size-resolved particle number concentrations and mass concentrations were measured using an Optical Particle Sizer (OPS, TSI, Inc.) and a Scanning Mobility Particle Sizer (SMPS, TSI, Inc.). Furthermore, we characterize the filter media morphology and smoke particles deposited on filter fibers using Scanning Electron Microscopy (SEM) to gain insights into the interaction dynamics of these particles. Our findings add to the comprehension of the relationship between MERV designations and smoke removal efficiency. Such insight can inform standards and guidelines and equip decision-makers with the knowledge needed to initiate measures for mitigating the impact of air pollution, specifically on the indoor environment.