Polychlorinated biphenyls (PCBs), persistent chemicals widely used for industrial purposes, have been banned in most parts of the world for decades. Owing to their bioaccumulative nature, PCBs are still found in high concentrations in marine mammals, particularly those that occupy upper trophic positions. While PCB-related health effects have been well-documented in some mammals, studies among dolphins and whales are limited. We conducted health evaluations of bottlenose dolphins (Tursiops truncatus) near a site on the Georgia, United States coast heavily contaminated by Aroclor 1268, an uncommon PCB mixture primarily comprised of octa-through deca-chlorobiphenyl congeners. A high proportion (26%) of sampled dolphins suffered anaemia, a finding previously reported from primate laboratory studies using high doses of a more common PCB mixture, Aroclor 1254. In addition, the dolphins showed reduced thyroid hormone levels and total thyroxine, free thyroxine and triiodothyronine negatively correlated with PCB concentration measured in blubber (p ¼ 0.039, , 0.001, 0.009, respectively). Similarly, T-lymphocyte proliferation and indices of innate immunity decreased with blubber PCB concentration, suggesting an increased susceptibility to infectious disease. Other persistent contaminants such as DDT which could potentially confound results were similar in the Georgia dolphins when compared with previously sampled reference sites, and therefore probably did not contribute to the observed correlations. Our results clearly demonstrate that dolphins are vulnerable to PCB-related toxic effects, at least partially mediated through the endocrine system. The severity of the effects suggests that the PCB mixture to which the Georgia dolphins were exposed has substantial toxic potential and further studies are warranted to elucidate mechanisms and potential impacts on other top-level predators, including humans, who regularly consume fish from the same marine waters.