The main objective of this study was to determine the content, mobility, and the variability of concentration of zinc, lead, and cadmium in soils from the Gorce Mountains (south Poland), located over 100 km south-east from the potential industrial sources of contamination—zinc-lead sulfide ore mine and smelter in Bukowno, as well as hard coal mines of Silesia region and Kraków Nowa-Huta steelwork. The abovementioned problem is crucial in the context of the traditional mountain farming still extant in the region, as well as intensively developing tourism. The geoaccumulation index and potential ecological risk index were adopted to evaluate soil pollution in the study area and the BCR sequential extraction technique to assess mobility of the abovementioned elements. The obtained results clearly show that the pollution from distant industrial sources in the mountains is detectable. Apart from the increased concentrations of the tested metals in the soil (especially available forms), there is also a strong correlation between the concentrations of lead, zinc, and cadmium, which proves their common source of origin. The main evidence is the fact that differences in the concentrations of the tested metals on the windward and leeward sides were statistically significant. This also means that the studied mountain area, despite relatively low altitudes (up to 1310 m above sea level), constitutes a measurable barrier to the spread of atmospheric pollutants.