2014
DOI: 10.1115/1.4026511
|View full text |Cite
|
Sign up to set email alerts
|

Tracking Error Analysis for Feedback Systems With Hysteresis Inversion and Fast Linear Dynamics1

Abstract: Analysis of closed-loop systems involving hysteresis is important to both the understanding of these systems and the synthesis of control schemes. However, such analysis is challenging due to the nonsmooth nature of hysteresis nonlinearities. In this paper, singular perturbation techniques are employed to derive an analytical approximation to the tracking error for a system consisting of fast linear dynamics preceded by a piecewise linear hysteresis nonlinearity, which is motivated by applications such as piez… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 28 publications
0
2
0
2
Order By: Relevance
“…where h(•) is a uniformly bounded operator. By then setting u(t) = q(t), inspired by the work in [10], the piezo-electric actuator's vibrational dynamics is modeled by a singularly perturbed linear system of the form…”
Section: Afm-modeling and Problem Definitionmentioning
confidence: 99%
See 1 more Smart Citation
“…where h(•) is a uniformly bounded operator. By then setting u(t) = q(t), inspired by the work in [10], the piezo-electric actuator's vibrational dynamics is modeled by a singularly perturbed linear system of the form…”
Section: Afm-modeling and Problem Definitionmentioning
confidence: 99%
“…Equation (10) are fulfilled if and only if α 2 = (k − d 2 /d) and α 3 = d; moreover, for the change of coordinates in (7) to be well defined, it is necessary that α 1 be different from zero. Hence, the following conditions must be enforced in (9):…”
Section: Afm-modeling and Problem Definitionmentioning
confidence: 99%
“…Um modelo de Prandtl-Ishlinskii (PI)é apresentado em Edardar et al (2014) Foi gerado um sinal de entrada de estimação conforme (7) com N = 6000, u 0 = 5 V, G 0 = 4 V, k 0 = 4800, u 1 = 10 V e G 1 = 3 V. Um segundo sinal de entrada foi gerado de forma similar para a validação dos modelos (Figura 2). Conforme pode ser observado na Figura 2a, os dados de saída se localizam em torno de 50 µm e 100 µm.…”
Section: Um Exemplo Numérico -Prandtl-ishlinskiiunclassified
“…Além do parâmetro adicional, o modelo modificado permite que todos os parâmetros apresentem valores negativos, o que não ocorre com o modelo clássico. Ambos modelos foram usados para realizar a compensação de histerese em dois casos: uma simulação numérica do modelo de Prandtl-Ishlinskii dado em (Edardar et al, 2014) e um sistema físico, válvula pneumática de uma planta piloto de nível. Em todos os casos avaliados, o modelo clássico apresentou desempenho inferior em relação ao modelo modificado, embora também tenha sidoútil para compensar parte dos efeitos não lineares.…”
Section: Conclusõesunclassified