Assessing elastic material properties from shear wave propagation following an acoustic radiation force impulse (ARFI) excitation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this paper, we describe a method to calculate shear wave signals using Green's tensor methods in an incompressible, hyperelastic material with uniaxial stretch. Phase and group velocities are determined for SH and SV propagation modes as a function of stretch by constructing the equation of motion from the Cauchy stress tensor determined from the strain energy density. The Green's tensor is expressed as the sum of contributions from the SH and SV propagation modes with the SH contribution determined using a closed-form expression and the SV contribution determined by numerical integration. Results are presented for a Mooney-Rivlin material model with a tall Gaussian excitation similar to an ARFI excitation. For an experimental configuration with a tilted material symmetry axis, results show that shear wave signals exhibit complex structures such as shear splitting that are characteristic of both the SH and SV propagation modes.