2020
DOI: 10.1155/2020/8831521
|View full text |Cite
|
Sign up to set email alerts
|

Traffic Status Prediction of Arterial Roads Based on the Deep Recurrent Q-Learning

Abstract: With the exponential growth of traffic data and the complexity of traffic conditions, in order to effectively store and analyse data to feed back valid information, this paper proposed an urban road traffic status prediction model based on the optimized deep recurrent Q-Learning method. The model is based on the optimized Long Short-Term Memory (LSTM) algorithm to handle the explosive growth of Q-table data, which not only avoids the gradient explosion and disappearance but also has the efficient storage and a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 40 publications
0
3
0
Order By: Relevance
“…Aunque principalmente se utiliza el aprendizaje guiado y supervisado para entrenar los modelos de predicción (Aqib et al, 2019), se han desarrollado propuestas para permitir que estos modelos aprendan mientras están en funcionamiento, utilizando datos en tiempo real (Hao, W. et al, 2020).…”
Section: Predicción De Tráficounclassified
See 1 more Smart Citation
“…Aunque principalmente se utiliza el aprendizaje guiado y supervisado para entrenar los modelos de predicción (Aqib et al, 2019), se han desarrollado propuestas para permitir que estos modelos aprendan mientras están en funcionamiento, utilizando datos en tiempo real (Hao, W. et al, 2020).…”
Section: Predicción De Tráficounclassified
“…(Shin et al, 2019); (Chabchoub et al, 2021); (Wakkumbura et al, 2021); (Zhang et al, 2020); (Li, Y. et al, 2021) Image Processing Es un método que utiliza un conjunto de técnicas para manipular y analizar imágenes digitales. (Bao et al, 2023); (Cheng et al, 2023); (Hao, W. et al, 2020); (Islam et al, 2022); (Chahal et al, 2023) Long Short-Term Memory (LSTM)…”
Section: Tablaunclassified
“…In the actual offline data training process, the network input should not only consider the impact of historical data on current data, but also prevent excessive historical data from being obliterated and eliminate the impact of current data. Therefore, the network input data length needs to be dynamically adjusted in real time [36]. The operation cycle of the controller is T c , and the actual output of the network training is Y c = {y c1 , y c2 , .…”
Section: Optimization Calculation Of Variable Time Domain State Lengthmentioning
confidence: 99%
“…dt , e δr (t) = δ tr (t) − δ r (t) (36) where, i pf , i pr , i if , i ir , i df, and i dr are the proportional, integral, and differential coefficients under the control of the front and rear wheel proportion integration differentiation (PID) controllers of the vehicle, respectively.…”
Section: Solution Of Mixed Sensitivity Problem Of Systemmentioning
confidence: 99%
“…Kumar and Sivanandan (2019) established a regression model to predict the congestion index (CI) of various types of vehicles by considering the bus congestion index, lane width, and signalized intersection as independent variables. Hao et al (2020) established an urban road traffic status prediction model based on a deep recursive Q-learning method, which was based on an optimized LSTM neural network. Ji and Hong (2019) used a deep learning method to predict the velocity of traffic flow based on real-time long-term evolution (LTE) data.…”
Section: Introductionmentioning
confidence: 99%