“…ENet (0.91, 0.87, 0.71) and UNet (0.88, 0.86, 0.70) were more accurate than ERFNet (0.87, 0.84, 0.65) in terms of DSC (for WG, TZ and PZ, respectively), while ENet outstood the other two methods, with faster convergence speed and fewer parameters. Saunders et al [ 49 ] compared the performance of independent training, transfer learning, and aggregated learning based on 3D and 2D U-Net models, on the premise of limited training data. In addition, 3D U-Net was found to be more robust to a small sample size (five training cases) than 2D U-Net by an average DSC of 0.18, while transfer learning and aggregated learning (similar DSC: 0.73, 0.83, 0.88 for PZ, CG, WG, respectively) both outperformed independent training (DSC 0.65, 0.77, 0.83) when using five internal training cases.…”