BAP and PBAP constitute the two different forms of the Drosophila melanogaster Brahma chromatin remodelers. A common multisubunit core, containing the Brahma ATPase, can associate either with Osa to form the BAP complex or with Bap170, Bap180, and Sayp to constitute the PBAP complex. Although required for many biological processes, recent genetic analyses revealed that one role of the BAP complex during Drosophila wing development is the proper regulation of EGFR target genes. Here, we show that Bap170, a distinctive subunit of the PBAP complex, participates instead in the negative regulation of EGFR signaling. In adults, loss of Bap170 generates phenotypes similar to the defects induced by hyperactivation of the EGFR pathway, such as overrecruitment of cone and photoreceptor cells and formation extra veins. In genetic interactions, bap170 mutations suppress the loss of veins and photoreceptors caused by mutations affecting the activity of the EGFR pathway. Our results suggest a dual requirement of the PBAP complex: for transcriptional repression of rhomboid and for efficient expression of argos. Interestingly, genetic evidence also indicates that Bap170-mediated repression of rho is inhibited by EGFR signaling, suggesting a scenario of mutual antagonism between EGFR signaling and PBAP function.