SAGA/TFTC-type multiprotein complexes play important roles in the regulation of transcription. We have investigated the importance of the nuclear positioning of a gene, its transcription and the consequent export of the nascent mRNA. We show that E(y)2 is a subunit of the SAGA/TFTCtype histone acetyl transferase complex in Drosophila and that E(y)2 concentrates at the nuclear periphery. We demonstrate an interaction between E(y)2 and the nuclear pore complex (NPC) and show that SAGA/TFTC also contacts the NPC at the nuclear periphery. E(y)2 forms also a complex with X-linked male sterile 2 (Xmas-2) to regulate mRNA transport both in normal conditions and after heat shock. Importantly, E(y)2 and Xmas-2 knockdown decreases the contact between the heat-shock protein 70 (hsp70) gene loci and the nuclear envelope before and after activation and interferes with transcription. Thus, E(y)2 and Xmas-2 together with SAGA/TFTC function in the anchoring of a subset of transcription sites to the NPCs to achieve efficient transcription and mRNA export.
The Drosophila TATA box-binding protein (TBP)-related factor 2 (TRF2 or TLF) was shown to control a subset of genes different from that controlled by TBP. Here, we have investigated the structure and functions of the trf2 gene. We demonstrate that it encodes two protein isoforms: the previously described 75-kDa TRF2 and a newly identified 175-kDa version in which the same sequence is preceded by a long N-terminal domain with coiled-coil motifs. Chromatography of Drosophila embryo extracts revealed that the long TRF2 is part of a multiprotein complex also containing ISWI. Both TRF2 forms are detected at the same sites on polytene chromosomes and have the same expression patterns, suggesting that they fulfill similar functions. A study of the manifestations of the trf2 mutation suggests an essential role of TRF2 during embryonic Drosophila development. The trf2 gene is strongly expressed in germ line cells of adult flies. High levels of TRF2 are found in nuclei of primary spermatocytes and trophocytes with intense transcription. In ovaries, TRF2 is present both in actively transcribing nurse cells and in the transcriptionally inactive oocyte nuclei. Moreover, TRF2 is essential for premeiotic chromatin condensation and proper differentiation of germ cells of both sexes.To initiate transcription, each eukaryotic RNA polymerase requires a set of general transcription factors. TFIID, composed of the TATA box-binding protein (TBP) and TBP-associated factors (TAFs), recognizes the core promoter in a sequence-specific manner and is thought to be the only sequence-specific factor that operates with RNA polymerase II (4, 51). The C-terminal core domain of TBP is highly conserved among eukaryotes and contains two symmetrical repeats that fold into a saddle-like structure essential for interaction with the promoter sequences (24,25).A second gene encoding a protein with high homology to the core domain of TBP, TBP-like factor (TLF; also called TRF2 or TLP), was detected in metazoan species (11,23,30,34,38,39,40,41,52). Like TBP, most members of the TLF family have a bipartite structure with a variable N-terminal domain and the highly conserved C-terminal core domain containing two direct repeats (11). TLF was shown to mediate polymerase II transcription initiation and to interact with TFIIA and TFIIB to form a preinitiation complex. However, TLF does not bind to the classical TATA box elements and has been shown to control a set of genes different from those controlled by TBP (12,34,40,41,45,50).Sequence comparison of core domains in the TLF family reveals that they are less conserved in evolution (40 to 45% identity among the metazoan species) than the TBP core domains (about 80% identity between yeast and humans). Thus, while the role of TBP is similar in different species, the function of TLF may have evolved into different regulatory pathways in evolutionarily distant species (11). Studies on the physiological function of TLF in Caenorhabditis elegans, Xenopus laevis, and Danio rerio have demonstrated that TLF is essenti...
Transcription activation by RNA polymerase II is a complicated process driven by combined, precisely coordinated action of a wide array of coactivator complexes, which carry out chromatin-directed activities and nucleate the assembly of the preinitiation complex on the promoter. Using various techniques, we have shown the existence of a stable coactivator supercomplex consisting of the chromatin-remodeling factor Brahma (SWI/SNF) and the transcription initiation factor TFIID, named BTFly (Brahma and TFIID in one assembly). The coupling of Brahma and TFIID is mediated by the SAYP factor, whose evolutionarily conserved activation domain SAY can directly bind to both BAP170 subunit of Brahma and TAF5 subunit of TFIID. The integrity of BTFly is crucial for its ability to activate transcription. BTFly is distributed genome-wide and appears to be a means of effective transcription activation.coactivators ͉ protein complex A ctivation of transcription by eukaryotic RNA polymerase II (Pol II) requires different groups of coactivators (for reviews, see refs. 1 and 2). The primary function of coactivators is to remodel and modify the chromatin template. Thus, chromatin remodelers of the Brahma (SWI/SNF-related) family play a genome-wide role in activation of Pol II-transcribed genes (3, 4). One more function of coactivators is to further recruit general transcription factors (GTFs) to form the Pol II preinitiation complex. The TFIID coactivator performs this function for most of Pol II-dependent genes (5, 6).Different coactivators recruited to the promoter assist each other and interact in a highly organized gene-specific manner (for a review, see ref. 7). However, this important regulatory step is still poorly understood. The best studied model is that of successive one-by-one recruitment of coactivators, which, in particular, is confirmed by the fact that the recruitment of chromatin-remodeling complexes is usually a prerequisite for the efficient recruitment of GTFs to the promoter (8, 9). The opposite model proposes one-time recruitment of preexisting supercomplex of several coactivators (10-12), although the composition of such supercomplexes described to date appears to be either ambiguous or incomplete.We have described the coactivator SAYP in Drosophila (13). SAYP is present at numerous sites on polytene chromosomes and colocalizes with Pol II in transcriptionally active euchromatin. SAYP homologs in various metazoans have an evolutionarily conserved core containing the SAY domain, which is involved in transcription activation, and 2 PHD fingers (13). Recently, SAYP was found to be associated with the chromatinremodeling Brahma complex of the PBAP subfamily (14). Here, we show that SAYP interacts both with Brahma and with TFIID, assembling them into a stable supercomplex named BTFly (Brahma and TFIID in one assembly). The presence of all BTFly components is crucial for its function in transcription activation. An important fact is that highly purified BTFly contains the full set of TFIID and Brahma subunits and, t...
Metazoan E(y)2/ENY2 is a multifunctional protein important for transcription activation and mRNA export, being a component of SAGA/TFTC and the mRNA export complex AMEX. Here, we show that ENY2 in Drosophila is also stably associated with THO, the complex involved in mRNP biogenesis. The ENY2-THO complex is required for normal Drosophila development, functioning independently on SAGA and AMEX. ENY2 and THO arrive on the transcribed region of the hsp70 gene after its activation, and ENY2 plays an important role in THO recruitment. ENY2 and THO show no direct association with elongating RNA polymerase II. Recruitment of ENY2 and THO occurs by their loading onto nascent mRNA, apparently immediately after its synthesis, while the AMEX component Xmas-2 is loaded onto mRNA at a later stage. Knockdown of either ENY2 or THO, but not SAGA or AMEX, affects the processing of the transcript's 39 end. Thus, ENY2, as a shared subunit of several protein complexes governing the sequential steps of gene expression, plays an important role in the coordination of these steps.[Keywords: THO; mRNA export; mRNP formation; gene expression; protein complex; ENY2] Supplemental material is available at http://www.genesdev.org.
Enhancers of yellow (e(y)) is a group of genetically and functionally related genes for proteins involved in transcriptional regulation. The e(y)3 gene of Drosophila considered here encodes a ubiquitous nuclear protein that has homologues in other metazoan species. The protein encoded by e(y)3, named Supporter of Activation of Yellow Protein (SAYP), contains an AT-hook, two PHD fingers, and a novel evolutionarily conserved domain with a transcriptional coactivator function. Mutants expressing a truncated SAYP devoid of the conserved domain die at a midembryonic stage, which suggests a crucial part for SAYP during early development. SAYP binds to numerous sites of transcriptionally active euchromatin on polytene chromosomes and coactivates transcription of euchromatin genes. Unexpectedly, SAYP is also abundant in the heterochromatin regions of the fourth chromosome and in the chromocenter, and represses the transcription of euchromatin genes translocated to heterochromatin; its PHD fingers are essential to heterochromatic silencing. Thus, SAYP plays a dual role in transcription regulation in euchromatic and heterochromatic regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.