Date of submission: 6/11/2020 Number of tables: 2 Number of figures: 8 all in color online only Word count: 8157 words including 690 words related to references cited within the text Number of supplementary tables: 1 Number of supplementary figures: 2 Highlight Copper deficiency alters shoot architecture, delays flowering and senescence, and compromises fertility by altering stigma morphology, disrupting anther lignification and dehiscence, and pollen redox status in Arabidopsis thaliana. 3 Abstract Copper deficiency reduces plant growth, male fertility and seed set. The contribution of copper to female fertility and the underlying molecular aspects of copper deficiency-caused phenotypes are not well-known. We show that among copper deficiency-caused defects in Arabidopsis thaliana were the increased shoot branching, delayed flowering and senescence, and entirely abolished gynoecium fertility. The increased shoot branching of copper-deficient plants was rescued by the exogenous application of auxin or copper. The delayed flowering was associated with the decreased expression of the floral activator, FT. Copper deficiency also decreased the expression of senescence-associated genes, WRKY53 and SAG13, but increased the expression of SAG12. The reduced fertility of copper-deficient plants stemmed from multiple factors including the abnormal stigma papillae development, the abolished gynoecium fertility, and the failure of anthers to dehisce. The latter defect was associated with reduced lignification, the upregulation of copper microRNAs and the downregulation of their targets, laccases, implicated in lignin synthesis. Copper-deficient plants accumulated ROS in pollen and had reduced cytochrome c oxidase activity in leaves. This study opens new avenues for the investigation into the relationship between copper homeostasis, hormone-mediated shoot architecture, gynoecium fertility and copper deficiency-derived nutritional signals leading to the delay in flowering and senescence.