The Na + -dependent glutamate/aspartate transporter GLAST plays a major role in the removal of glutamate from the synaptic cleft. Short-term, as well as long-term changes in transporter activity are triggered by glutamate. An important locus of regulation is the density of transporter molecules present at the plasma membrane. A substrate-dependent change in the translocation rate of the transporter molecules accounts for the short-term effect, whereas the long-term modulation apparently involves transcriptional regulation. Using cultured chick cerebellar Bergmann glial cells, we report here that glutamate receptors activation mediate a substantial reduction in the transcriptional activity of the chglast promoter through the Ca 2+ /diacylglicerol-dependent protein kinase (PKC) signaling cascade. Overexpression of constitutive active PKC isoforms of mimic the glutamate effect. Accordingly, increased levels of c-Jun or c-Fos, but not Jun-B, Jun-D or Fos-B, lower the chglast promoter activity. Serial deletions and electrophorectic mobility shift assays were used to define a specific region within the 5¢ proximal region of the chglast promoter, associated with transcriptional repression. A putative glutamate response element could be defined in the proximal promoter stretch more likely between nts -40 and ) 78. These results demonstrate that GLAST is under glutamate-dependent transcriptional control through PKC, and support the notion of a pivotal role of this neurotransmitter in the regulation of its own removal from the synaptic cleft, thereby modulating, mainly in the long term, glutamatergic transmission.