Background: Toll-like receptor 4 (TLR4) plays an important role in the elimination of Gram-negative bacteria infections and the initiation of antiinflammatory response. Using the technology of pronuclear microinjection, genetically modified (GM) sheep with TLR4 overexpression were generated. Previous studies have shown that these GM sheep exhibited a higher inflammatory response to Gram-negative bacteria infection than wild type (WT) sheep. In order to evaluate the gene expression of GM sheep and study the co-expressed and downstream genes for TLR4, peripheral blood mononuclear cells (PBMC) from TLR4-overexpressing (Tg) and wild type (WT) sheep were selected to discover the transcriptomic differences using RNA-Seq. Result: An average of 18,754 and 19,530 known genes were identified in the Tg and WT libraries, respectively. A total of 338 known genes and 85 novel transcripts were found to be differentially expressed in the two libraries (p < 0.01). A differentially expressed genes (DEGs) enrichment analysis showed that the GO terms of inflammatory response, cell recognition, etc. were significantly (FDR < 0.05) enriched. Furthermore, the above DEGs were significantly (FDR < 0.05) enriched in the sole KEGG pathway of the Phagosome. Real-time PCR showed the OLR1, TLR4 and CD14 genes to be differentially expressed in the two groups, which validated the DEGs data. Conclusions: The RNA-Seq results revealed that the overexpressed TLR4 in our experiment strengthened the ovine innate immune response by increasing the phagocytosis in PBMC.