The construction of microbial consortia is challenging due to many variables to be controlled, including the cross‐compatibility of the selected strains and their additive or synergistic effects on plants. In this work, we investigated the interactions in vitro, in planta, and at the molecular level of two elite biological control agents (BCAs), that is Streptomyces microflavus strain AtB‐42 and Trichoderma harzianum strain M10, to understand their attitude to cooperate in a consortium. In vitro, we observed a strong cross‐antagonism between AtB‐42 and M10 in agar plates due to diffusible metabolites and volatile organic compounds. In liquid co‐cultures, M10 hindered the growth of AtB‐42 very likely because of secondary metabolites and strong competition for the nutrients. The interaction in the co‐culture induced extensive transcriptional reprogramming in both strains, especially in the pathways related to ribosomes, protein synthesis, and oxidoreductase activity, suggesting that each strain recognized the counterpart and activated its defence responses. The metabolome of both strains was also significantly affected. In contrast, in the soil, M10 growth was partially contrasted by AtB‐42. The roots of tomato seedlings inoculated with the consortium appeared smaller than the control and single‐strain‐inoculated plants, indicating that plants diverted some energy from the development to defence activation, as evidenced by the leaf transcriptome. The consortium induced a stronger transcriptional change compared to the single inoculants, as demonstrated by a higher number of differentially expressed genes. Although the cross‐antagonism observed in vitro, the two strains exerted a synergistic effect on tomato seedlings by inducing resistance responses stronger than the single inoculants. Our observations pose a question on the usefulness of the sole in vitro assays for selecting BCAs to construct a consortium. In vivo experiments should be preferred, and transcriptomics may greatly help to elucidate the activity of the BCAs beyond the phenotypic effects on the plant.