Red swamp crayfish is an important model organism for research of the invertebrate
innate immunity mechanism. Its excellent disease resistance against bacteria, fungi,
and viruses is well-known. However, the antiviral mechanisms of crayfish remain
unclear. In this study, we obtained high-quality sequence reads from normal and white
spot syndrome virus (WSSV)-challenged crayfish gills. For group normal (GN),
39,390,280 high-quality clean reads were randomly assembled to produce 172,591
contigs; whereas, 34,011,488 high-quality clean reads were randomly assembled to
produce 182,176 contigs for group WSSV-challenged (GW). After GO annotations
analysis, a total of 35,539 (90.01%), 14,931 (37.82%), 28,221 (71.48%), 25,290
(64.05%), 15,595 (39.50%), and 13,848 (35.07%) unigenes had significant matches with
sequences in the Nr, Nt, Swiss-Prot, KEGG, COG and GO databases, respectively.
Through the comparative analysis between GN and GW, 12,868 genes were identified as
differentially up-regulated DEGs, and 9,194 genes were identified as differentially
down-regulated DEGs. Ultimately, these DEGs were mapped into different signaling
pathways, including three important signaling pathways related to innate immunity
responses. These results could provide new insights into crayfish antiviral immunity
mechanism.