A thermotropic liquid crystalline copolymer (TLCP) having a trimethylene terephthalate (TT) unit and a triad terephthaloyl mesogenic unit was synthesized and its blends with poly(trimethylene terephthalate) (PTT) were prepared for TLCP‐reinforced fiber spinning. The TLCP, PTT, and their blends were characterized in terms of their thermal, mechanical, and morphological properties. In the hot‐drawn fibers of 20 wt % TLCP/PTT blend, the well‐oriented fibrils were observed at higher temperature (>Tm) than the PTT melt by polarizing optical microscope. With scanning electron microscopy images of cryogenically fractured surfaces of the blends, the TLCP were well dispersed in 0.3 to 0.5 µm in domain size. Interfacial adhesion between the TLCP and PTT seemed fairly good. The TLCP acted effectively as a reinforcing material in PTT matrix, it led to an increase of initial modulus and tensile strength of the blend fibers as TLCP's content increased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41408.