Most bacteria produce antibacterial proteins known as bacteriocins, which aid bacterial defence systems to provide a physiological advantage. To date, many kinds of bacteriocins have been characterized. Colicin has long been known as a plasmidborne bacteriocin that kills other Escherichia coli cells lacking the same plasmid. To defeat other cells, colicins exert specific activities such as ion-channel, DNase, and RNase activity. Colicin E5 and colicin D impair protein synthesis in sensitive E. coli cells; however, their physiological targets have not long been identified. This review describes our finding that colicins E5 and D are novel RNases targeting specific E. coli tRNAs and elucidates their enzymatic properties based on biochemical analyses and X-ray crystal structures. Moreover, tRNA cleavage mediates bacteriostasis, which depends on trans-translation. Based on these results and others, cell growth regulation depending on tRNA cleavage is also discussed.