Human induced pluripotent stem cells (hiPSCs) are a potential source for cell therapy of Duchenne muscular dystrophy. To reliably obtain skeletal muscle progenitors from hiPSCs, we treated hiPS cells with a Wnt activator, CHIR-99021 and a BMP receptor inhibitor, LDN-193189, and then induced skeletal muscle cells using a previously reported sphere-based culture. This protocol greatly improved sphere formation efficiency and stably induced the differentiation of myogenic cells from hiPS cells generated from both healthy donors and a patient with congenital myasthenic syndrome. hiPSC-derived myogenic progenitors were enriched in the CD57(−) CD108(−) CD271(+) ERBB3(+) cell fraction, and their differentiation was greatly promoted by TGF-β inhibitors. TGF-β inhibitors down-regulated the NFIX transcription factor, and NFIX short hairpin RNA (shRNA) improved the differentiation of iPS cell-derived myogenic progenitors. These results suggest that NFIX inhibited differentiation of myogenic progenitors. hiPSC-derived myogenic cells differentiated into myofibers in muscles of NSG-mdx4Cv mice after direct transplantation. Our results indicate that our new muscle induction protocol is useful for cell therapy of muscular dystrophies.
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscular weakness due to the loss of dystrophin. Extracellular Ca2+ flows into the cytoplasm through membrane tears in dystrophin-deficient myofibers, which leads to muscle contracture and necrosis. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) takes up cytosolic Ca2+ into the sarcoplasmic reticulum (SR), but its activity is decreased in dystrophic muscle. Here, we show that an allosteric SERCA activator, CDN1163, ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. Administration of CDN1163 prevented exercise-induced muscular damage and restored mitochondrial function. In addition, treatment with CDN1163 for seven weeks enhanced muscular strength and reduced muscular degeneration and fibrosis in mdx mice. Our findings provide preclinical proof-of-concept evidence that pharmacological activation of SERCA could be a promising therapeutic strategy for DMD. Moreover, CDN1163 improved muscular strength surprisingly in wild-type mice, which may pave the new way for the treatment of muscular dysfunction.
Understanding the signaling pathways that regulate proliferation and differentiation of muscle progenitors is essential for successful cell transplantation for treatment of Duchenne muscular dystrophy. Here, we report that a γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine tertial butyl ester), which inhibits the release of NICD (Notch intercellular domain), promotes the fusion of human muscle progenitors in vitro and improves their engraftment in the tibialis anterior muscle of immune-deficient mice. Gene expression analysis revealed that DAPT severely down-regulates PTGER2, which encodes prostaglandin (PG) E2 receptor 2 (EP2), in human muscle progenitors in the differentiation condition. Functional analysis suggested that Notch signaling inhibits differentiation and promotes self-renewal of human muscle progenitors via PGE2/EP2 signaling in a cAMP/ PKA-independent manner.
Three to eight percent of female carriers of Duchenne muscular dystrophy (DMD) develop dystrophic symptoms ranging from mild muscle weakness to a rapidly progressive DMD-like muscular dystrophy due to skewed inactivation of X chromosomes during early development. Here, we generated human induced pluripotent stem cells (hiPSCs) from a manifesting female carrier using retroviral or Sendai viral (SeV) vectors and determined their X-inactivation status. Although manifesting carrier-derived iPS cells showed normal expression of human embryonic stem cell markers and formed well-differentiated teratomas in vivo, many hiPS clones showed bi-allelic expression of the androgen receptor (AR) gene and loss of X-inactivation-specific transcript and trimethyl-histone H3 (Lys27) signals on X chromosomes, suggesting that both X chromosomes of the hiPS cells are in an active state. Importantly, normal dystrophin was expressed in multinucleated myotubes differentiated from a manifesting carrier of DMD-hiPS cells with XaXa pattern. AR transcripts were also equally transcribed from both alleles in induced myotubes. Our results indicated that the inactivated X chromosome in the patient's fibroblasts was activated during reprogramming, and XCI occurred randomly during differentiation.
RNAs, such as mRNA, rRNA and tRNA, are essential macromolecules for cell survival and maintenance. Any perturbation of these molecules, such as by degradation or mutation, can be toxic to cells and may occasionally induce cell death. Therefore, cells have mechanisms known as quality control systems to eliminate abnormal RNAs. Although tRNA is a stable molecule, the anticodon loop is quite susceptible to tRNA-targeting RNases such as colicin E5 and colicin D. However, the mechanism underlying cellular reaction to tRNA cleavage remains unclear. It had long been believed that tRNA cleavage by colicins E5 and D promptly induces cell death because colony formation of the sensitive cells is severely reduced; this indicates that cells do not resist the tRNA cleavage. Here, we show that Escherichia coli cells enter a bacteriostatic state against the tRNA cleavage of colicins D and E5. The bacteriostasis requires small protein B (SmpB) and transfer-messenger RNA (tmRNA), which are known to mediate trans-translation. Furthermore, another type of colicin, colicin E3 cleaving rRNA, immediately reduces the viability of sensitive cells. Moreover, nascent peptide degradation has an additive effect on bacteriostasis. Considering the recent observation that tRNA cleavage may be used as a means of cell-to-cell communication, tRNA cleavage could be used by bacteria not only to dominate other bacteria living in the same niche, but also to regulate growth of their own or other cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.