Transfer optimization, one type of optimization methods, which leverages knowledge of the completed tasks to accelerate the design progress of a new task, has been in widespread use in machine learning community. However, when applying transfer optimization to accelerate the progress of aerodynamic shape optimization (ASO), two challenges are encountered in sequence, that is, (1) how to build a shared design space among the related aerodynamic design tasks, and (2) how to exchange information between tasks most efficiently. To address the first challenge, a datadriven generative model is used to learn airfoil representations from the existing database, with the aim of synthesizing various airfoil shapes in a shared design space. To address the second challenge, both singleand multifidelity Gaussian processes (GPs) are employed to carry out optimization. On one hand, the multifidelity GP is used to leverage knowledge from the completed tasks. On the other hand, mutual learning is established between singleand multifidelity GP models by exchanging information between them in each optimization cycle. With the above, a generative transfer optimization (GTO) framework is proposed to shorten the design cycle of aerodynamic design. Through airfoil optimizations at different working conditions, the effectiveness of the proposed GTO framework is demonstrated.