2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) 2021
DOI: 10.1109/icmla52953.2021.00078
|View full text |Cite
|
Sign up to set email alerts
|

Transform-Based Tensor Auto Regression for Multilinear Time Series Forecasting

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…Denote YtN×P$$ {\boldsymbol{Y}}_t\in {\mathbb{R}}^{N\times P} $$(Yt=Y:,t,:$$ {\mathbf{Y}}_{\mathrm{t}}={\mathcal{Y}}_{:,t,:} $$). By the definition of scriptL$$ \mathcal{L} $$ product [4], matrixtruebold-italicYt=scriptA×Lbold-italicYt1+bold-italicεt,$$ {\boldsymbol{Y}}_t={\mathcal{A}}_{\times \mathcal{L}}{\boldsymbol{Y}}_{t-1}+{\boldsymbol{\varepsilon}}_t, $$ where εtbold∈N×P)(εt=E:,t,:$$ {\boldsymbol{\varepsilon}}_t\mathbf{\in}{\mathbb{R}}^{N\times P}\left({\boldsymbol{\varepsilon}}_t={\mathcal{E}}_{:,t,:}\right) $$. Model (1) is equivalent to model (8).…”
Section: Discussionmentioning
confidence: 99%
“…Denote YtN×P$$ {\boldsymbol{Y}}_t\in {\mathbb{R}}^{N\times P} $$(Yt=Y:,t,:$$ {\mathbf{Y}}_{\mathrm{t}}={\mathcal{Y}}_{:,t,:} $$). By the definition of scriptL$$ \mathcal{L} $$ product [4], matrixtruebold-italicYt=scriptA×Lbold-italicYt1+bold-italicεt,$$ {\boldsymbol{Y}}_t={\mathcal{A}}_{\times \mathcal{L}}{\boldsymbol{Y}}_{t-1}+{\boldsymbol{\varepsilon}}_t, $$ where εtbold∈N×P)(εt=E:,t,:$$ {\boldsymbol{\varepsilon}}_t\mathbf{\in}{\mathbb{R}}^{N\times P}\left({\boldsymbol{\varepsilon}}_t={\mathcal{E}}_{:,t,:}\right) $$. Model (1) is equivalent to model (8).…”
Section: Discussionmentioning
confidence: 99%