Petri net is a highly useful tool for modeling of discrete-event systems. However, Petri net models of real-life systems are enormous, and their state-spaces are usually of infinite size. Thus, performing analysis on the model becomes difficult. Hence, slicing of Petri Net is suggested to reduce the size of the Petri nets. However, the existing slicing algorithms are ineffective for real-world systems. Therefore, there is a need for alternative methodologies for slicing that are effective for Petri net models of large real-life systems. This paper proposes a new Modular Petri Net as a solution. In modular Petri net, large Petri net models are decomposed into modules. These modules are compact, and the state spaces of these modules are also compact enough to be exhaustively analyzed. The research contributions of this paper are the following: Firstly, an exhaustive literature study is done on Modular Petri Nets. Secondly, from the conclusions drawn from the literature study, a new Petri net is proposed that supports module composition with clearly defined syntax. Thirdly, the new Petri net is implemented in the software GPenSIM, which is crucial so that real-life discrete-event systems could be modeled, analyzed, and performance-optimized with GPenSIM.