Key Points• NOD-specific Sirpa polymorphism is the genetic determinant of highly efficient xenograft activity in NOD-based immunodeficient mouse models.Current mouse lines efficient for human cell xenotransplantation are backcrossed into NOD mice to introduce its multiple immunodeficient phenotypes. Our positional genetic study has located the NOD-specific polymorphic Sirpa as a molecule responsible for its high xenograft efficiency: it recognizes human CD47 and the resultant signaling may cause NOD macrophages not to engulf human grafts. In the present study, we established C57BL/6.Rag2 nullIl2rgnull mice harboring NOD-Sirpa (BRGS). BRGS mice engrafted human hematopoiesis with an efficiency that was equal to or even better than that of the NOD.Rag1 nullIl2rgnull strain, one of the best xenograft models. Consequently, BRGS mice are free from other NOD-related abnormalities; for example, they have normalized C5 function that enables the evaluation of complement-dependent cytotoxicity of antibodies against human grafts in the humanized mouse model. Our data show that efficient human cell engraftment found in NOD-based models is mounted solely by their polymorphic Sirpa. The simplified BRGS line should be very useful in future studies of human stem cell biology. (Blood.
2013;121(8):1316-1325)
IntroductionImmunodeficient mice are widely used to reconstitute human hematopoiesis by xenotransplantation of hematopoietic stem cells (HSCs). 1,2 This "humanized" mouse model provides a powerful tool with which to evaluate the biologic properties of human HSCs and progenitors in vivo. 3,4 Such xenotransplantation systems have also been used to study human cancer stem cells. [5][6][7][8] Elimination of the lymphoid system is the first step to achieving reconstitution of human hematopoiesis. To deplete T and B cells, the scid mutation in the Prkdc gene [9][10][11] or disruption of the recombination activating gene 1 or 2 (Rag1 and Rag2) 12,13 has been introduced into various mouse strains. In addition, to deplete natural killer (NK) cells or their functions, the IL-2 receptor common ␥ chain subunit (Il2rg) [14][15][16] or beta-2-microglobulin (B2m) [17][18][19] is disrupted.However, depletion of lymphoid cells is not sufficient and it has been shown empirically that additional strain-specific factors modulate human hematopoietic engraftment in the xenotransplantation setting. For example, within the SCID strain, the SCID with the NOD background was the gold standard for the xenotransplantation assay based on its high efficiency. 11 In fact, recent studies have shown that among the lymphoid-depleted mouse strains, the NOD-scid Il2rg null (NSG/NOG) 14,15 and NOD.Rag1 null Il2rg null (NOD-RG) 20 strains are the most efficient; the BALB/c.Rag2 null Il2rg null (BALB-RG) strain is the next efficient 21,22 ; and the C57BL/6 strains with scid, 23 Rag2 null , Rag2 null B2m null , Rag2 null Prf null , 24 or Rag2 null Jak3 null25 mutations are unable to reconstitute human hematopoiesis. The NOD strain has multiple immune deficiencies, ...