Abstract:Plastics are being preferred in almost all possible applications of materials. Several new applications including optical devices are being developed using plastics replacing conventional materials like inorganic glass etc. For the optical applications, the most important properties of plastics essential for their desired performance include refractive index, Abbe number, optical clarity, etc. The biggest challenge in developing suitable materials for optical applications has always been to meet the criteria of high refractive index along with a high Abbe number. Normally, if the refractive index increases, the Abbe number automatically decreases. The researchers have tried several approaches to deal with this typical challenge without which it is not possible to develop novel optical plastics. Presently the most popularly known optical plastics includes polymers such as polymethacrylates, polyurethanes, polycarbonates, polystyrene and diethylene glycol bis allyl carbonate. The latest material of high refractive index plastics with a refractive index of 1.67 belongs to the polythiourethanes chemistry. Several approaches are being tried world over, to develop materials of high refractive index. One of the approaches being pursued for enhancement of refractive index of existing monomers pertain to the incorporation of metals or metal salts in the matrices. The other commonly tried but difficult to achieve approaches pertain to the preparation of nanoparticles or nanocomposites.