Nowadays, the electric connection circuits of power plants (based on fossil fuels as well as renewable sources) entail GCBs at the generator terminals, since the presence of that electric equipment offers many advantages related to the sustainability of a power plant. In an alternating current (a.c.) circuit the interruption of a short-circuit is performed by the circuitbreaker at the natural passing through zero of the short-circuit current. During the current interruption, an electric arc is generated between the opened contacts of the circuit-breaker. This arc must be cooled and extinguished in a controlled way. Since the synchronous generator stator can flow via highly asymmetrical short-circuit currents, the phenomena which occur in the case of short-circuit currents interruption determine the main stresses of the generator OPEN ACCESS 2 circuit-breaker; the current interruption requirements of a GCB are significantly higher than for the distribution network circuit breakers. For shedding light on the proper moment when the generator circuit-breaker must operate, using the space phasor of the short-circuit currents, the time expression to the first zero passing of the short-circuit current is determined. Here, the manner is investigated in which various factors influence the delay of the zero passing of the short-circuit current. It is shown that the delay time is influenced by the synchronous machine parameters and by the load conditions which precede the short-circuit. Numerical simulations were conducted of the asymmetrical currents in the case of the sudden three-phase short circuit at the terminals of synchronous generators. Further in this study it is emphasized that although the phenomena produced in the electric arc at the terminals of the circuit-breaker are complicated and not completely explained, the concept of exergy is useful in understanding the physical phenomena. The article points out that just after the short-circuit current interruption by the generator the circuit-breaker (when the GCB has been subjected to a 50,000 degree plasma arc), between its opened contacts, there arises the transient recovery voltage (TRV) which constitutes the most important dielectric stress after the electric arc extinction. Since the magnitude and shape of the TRV occurring across the generator circuit-breaker are critical parameters in the recovering gap after the current zero, in this paper, we model, for the case of the faults fed by the main step-up transformer, the equivalent configurations, with operational impedances, for the TRV calculation, taking into account the main transformer parameters, on the basis of the symmetrical components method.