Simultaneous measurements of transmitted 500 kHz electric fields and of electron fluxes nonlinearly energized by those fields were made during the ionospheric flight of the rocket double payload OEDIPUS C. Given the local plasma parameters, 500 kHz corresponded to the whistler mode of cold-plasma propagation. As the separation between each payload end increased from 153 to 537 m, enhanced electron fluxes were detected at energies up to 20 keV, at the receiver end of the tether. Rf (radio frequency) electric fields created by the OEDIPUS-C transmitter have been computed for positions close to the whistler-mode group resonance cone and also for locations very close to the active dipoles. Test-particle trajectory tracings show that linear acceleration can account for the energy increases of electrons with starting energies up to about 100 eV. Neither resonant field-particle interactions of background energetic electrons nor strong turbulence of the background thermal particles explain the creation of sounder-accelerated electrons at 1–10 keV. The calculated magnitudes of the very near potentials, up to 550 V, point to acceleration by intense fields in the rf sheath region.