SUMMARYIn this paper, we develop a three-dimensional (3-D) device simulator, which combines a simplified, decoupled Gummel-like method equivalent-circuit model (DM) with levelized incomplete LU (L-ILU) factorization. These complementary techniques are successfully combined to yield an efficient and robust method for semiconductor-device simulation. The memory requirements are reduced significantly compared to the conventionally used Newton-like method. Furthermore, the complex voltage-controlled current source (VCCS) is simplified as a nonlinear resistor. Hence, the programming and debugging for the nonlinear resistor model is much easier than that for the VCCS model. Further, we create a connectiontable to arrange the scattered non-zero fill-ins in sparse matrix to increase the efficiency of L-ILU factorization. Low memory requirements may pave the way for the widespread application in 3-D semiconductor-device simulation. We use the body-tied silicon-on-insulator MOSFET structure to illustrate the capability and the efficiency of the 3-D DM equivalent-circuit model with L-ILU factorization.