Spontaneous histopathological regression of cancer has been reported. The involvement of the immune system in such regression has been advocated, leading to the theory of immunological surveillance against cancer. A prediction of this theory is that common tumour antigens can be recognized upon repeated exposure by cell-mediated immunity, which leads to tumour regression and the subsequent appearance of tumour antigen-loss variants. However, no direct evidence has been provided in non-viral-induced experimental animal models of primary malignancy or in human primary cancer. This study examined two groups of melanoma patients where histopathological regression of the primary tumour was observed. Many of the 23 patients with multiple (> or =3) primary melanomas showed significant regression of their last melanoma (median 33%, mean 40) compared with matched melanomas from patients with a single primary melanoma (median 0%, mean 12) (p=0.0080), or compared with their first primary melanoma (p=0.0013). Regression was consistent with an 'immunization effect' seen in murine tumour transplantation studies, where inoculation with > or =3 asynchronous tumours induces transplantation rejection on subsequent challenge. A significant decrease in the expression of the melanoma common tumour antigen MART-1 in the last primary tumour from multiple melanoma patients (median 8%, mean 24) versus matched single melanoma patients (median 79%, mean 68) (p=0.0041) and in the last versus first tumour in multiple primary patients was found (p=0.0083). Metastases from 17 patients whose primary skin melanomas had completely regressed (occult primary melanoma) also showed significant MART-1 loss (median 0%, mean 11) compared with matched metastases from patients with non-regressing primary melanoma (median 51%, mean 50) (p=0.0013). MART-1 antigen-loss variants observed in the multiple primary and occult primary patients correlated with the presence of peripheral blood MART-1-specific cytotoxic T lymphocytes (CTLs) (p=0.03). No similar effects were observed with two other melanoma antigens, gp100 and CD63. Thus, in two groups of human melanoma patients, evidence is provided for histopathological tumour regression associated with cancer immune surveillance.