Air curtain is an efficient device for cutting off airflow and confining contaminants. Inspired by the ability, a circulated air curtain composed of end-to-end plane jets generated by a relay of air pillars is proposed to confine exhaled contaminants in this study. Furthermore, the optimization study of computational fluid dynamics (CFD) is conducted to explore cutting-off performance and find better design parameters under different conditions, i.e., human-curtain distance, enclosure shape, jet velocity from air pillar, and exhalation modes. The multidirectional blockage and vortex-like rotative transmission routes of exhaled airflow are observed when air curtain exists. Results indicate that contaminants are concentrated around the source. The average mole fraction of exhaled contaminants outside air curtain under different human-curtain distance decreases 4.3%–19.6% compared to mixing ventilation with same flux. Shortening the human-curtain distance can improve the performance of air curtain and may change the direction of exhaled airflow. Moreover, It has better performance when the enclosure shape is close to a circle. Higher jet velocity is better for improving the confinement performance, but the trend is not very obvious as velocity increases. For exhalation modes, it is more challenging to control exhaled contaminants for intense exhalation activity (such as coughing) in steady simulation, but results in transient simulation show better performance when coughing only once. These results can provide a reference for the subsequent design and improvement in applying air curtain in hospital wards or other places, especially during the period of flu outbreak.
Electronic Supplementary Material (ESM)
Supplementary material is available in the online version of this article at 10.1007/s12273-020-0667-5. The ESM file presents the animation of the droplet trajectory from the droplet birth at 0 s to 8 s