Tandem catalysis has been at the forefront of synthesis in the past decade due to the reduction in the number of steps and purification needed for the synthesis of commercially relevant molecules. With the right combination of catalyst systems, which could be homometallic or multimetallic, one can construct complex structural motifs in a one-pot procedure without the requirement for the isolation of the intermediates, reducing both reagent waste and time. Over the years, application of tandem catalysis has certainly extended towards arene and heteroarene motifs; nucleoside modification using such a strategy has been rare. In this regard, we would like to report herein the development of numerous homometallic and multimetallic tandem catalytic protocols for the modification of nucleosides, providing efficient access to a diverse range of molecules with promising fluorescent properties, as well as pharmaceutically relevant antiviral drugs such as FV-100.