Homogeneous catalysis plays an important and ubiquitous role in the synthesis of simple and complex molecules, including drug compounds, natural products, and agrochemicals. In recent years, the wide-reaching importance of homogeneous catalysis has made it an indispensable tool for the modification of biomolecules, such as carbohydrates (sugars), amino acids, peptides, nucleosides, nucleotides, and steroids. Such a synthetic strategy offers several advantages, which have led to the development of new molecules of biological relevance at a rapid rate relative to the number of available synthetic methods. Given the powerful nature of homogeneous catalysis in effecting these synthetic transformations, this Focus Review has been compiled to highlight these important developments.
Vanadium-catalyzed C-N dehydrogenative cross-coupling of alkenyl hydrazones leading to functionalized pyrazoles is described in a 1:1 mixture of toluene/H2O using air as the terminal oxidant. Significant practical features include use of the commercial nontoxic VOSO4 as a recyclable catalyst, mild reaction conditions, scalability, and the broad substrate scope. Some of the product pyrazoles exhibit interesting photophysical properties. Fluorescence light-up sensing of BSA protein by one of the pyrazoles is also highlighted.
Triazolo-β-aza-ε-amino acid and its aromatic analogue ((Al)TAA/(Ar)TAA) in the peptide backbone mark a novel class of conformationally constrained molecular scaffolds to induce β-turn conformations. This was demonstrated for (Al)TAA in a Leu-enkephalin analogue and in a designed pentapeptide wherein the FRET process was established. Restricted rotation induced chirality and turn conformation into the achiral aromatic amino acid scaffold, (Ar)TAA, which in a short tripeptide backbone acted as a β-turn mimic as a β-sheet folding nucleator.
The β-turn conformation and FRET process were established in the designed tripeptide containing fluorescent triazolyl donor and acceptor-decorated unnatural amino acids separated by a natural alanine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.