Using a semiclassical approach we show that the spectrum of a smooth Anosov vector field V on a compact manifold is discrete (in suitable anisotropic Sobolev spaces) and then we provide an upper bound for the density of eigenvalues of the operator (−i) V , called Ruelle resonances, close to the real axis and for large real parts.
RésuméPar une approche semiclassique on montre que le spectre d'un champ de vecteur d'Anosov V sur une variété compacte est discret (dans des espaces de Sobolev anisotropes adaptés). On montre ensuite une majoration de la densité de valeurs propres de l'opérateur (−i) V , appelées résonances de Ruelle, près de l'axe réel et pour les grandes parties réelles.