Abstract. Let G be a transitive permutation group on a finite set of size at least 2. By a well known theorem of Fein, Kantor and Schacher, G contains a derangement of prime power order. In this paper, we study the finite primitive permutation groups with the extremal property that the order of every derangement is an r -power, for some fixed prime r . First we show that these groups are either almost simple or affine, and we determine all the almost simple groups with this property. We also prove that an affine group G has this property if and only if every two-point stabilizer is an r -group. Here the structure of G has been extensively studied in work of Guralnick and Wiegand on the multiplicative structure of Galois field extensions, and in later work of Fleischmann, Lempken and Tiep on r -semiregular pairs.