Influence of heat treatment and fillers on the heat distortion temperature (HDT) of poly(lactic acid) hybrid biocomposites was intensively studied through HDT testing, polarizing microscope (POM), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). With loading 20 wt % BF or 20 wt % talc, improvement of HDT in PLA composite was about 10 C comparing with neat PLA after heat treatment. Moreover, there was a great improvement (above 45 C) of HDT in PLA composites with loading 20 wt % BF and 20 wt % talc simultaneously after heat treatment. Transcrystallization was observed during heat treatment and isothermal crystallization of PLA composites with loading BF and talc simultaneously. There was no similar phenomenon in other PLA composite with loading only one filler. The possible mechanism of forming transcrystallization was proposed. DSC and DMA were also used to clarify the variation in HDT before and after heat treatment, and the results suggest that the crystallinity, modulus and glass transition changed, especially formation of transcrystallization played a key role in improvement of HDT in PLA composites.