The alpha 1-receptor agonist phenylephrine relaxed longitudinal rabbit jejunal muscle contracted in vitro by low concentrations of barium ions (1 mM). When the Ba2+ concentration was increased to 10-15 mM the response to phenylephrine was a contraction, and at Ba2+ concentrations in between the high and low range this response was biphasic--a relaxation followed by a contractile phase. The alpha 2-receptor agonist clonidine did not affect the tone of the Ba2+ contracted preparation. When the muscle preparation was contracted by Sr2+ (1-20 mM) in the presence of Ca2+ (2.5 mM), phenylephrine relaxed it, and no contractile response to phenylephrine was observed. In the absence of extracellular Ca2+, 5 mM Ba2+ caused a contraction. Under these conditions phenylephrine had no effect on the tissue tone. When Ca2+ was added in a low concentration (0.2-2 mM), phenylephrine elicited a gradually increasing contractile response. At 5 mM Ca2+ the contractile response was replaced by the normal relaxation. The contractile response to phenylephrine in the presence of 5 mM Ba2+ and 2.5 mM Ca2+ was partially blocked by low concentrations of verapamil. In higher concentrations verapamil abolished the tissue tonus completely. The contractile response to phenylephrine in the presence of 5 mM Ba2+ and 2.5 mM Ca2+ could be reverted to the normal relaxation by the addition of 20 mM Mg2+. Increasing the K+ concentration from the normal 5.9 to 62.9 mM blocked the phenylephrine-induced relaxation. No contractile response to phenylephrine occurred. It is concluded that Ba2+ could reverse the response of alpha 1 receptor stimulation in rabbit jejunum from a relaxation to a contraction and that this contractile response was dependent on the presence of Ca2+.