Background: A future, highly renewable electricity system will be largely based on fluctuating renewables. The integration of wind and solar photovoltaics presents a major challenge. Transmission can be used to lower the need for complementary generation, which we term backup in this article. Methods: Generation data based on historical weather data, combined with real load data, determine hourly mismatch timeseries for all European countries, connected by physical power flows. Two localized export schemes determining the power flows are discussed, which export only renewable excess power, but no backup power, and are compared to a synchronized export scheme, which exports renewable excess power and also backup power. Results: Compared to no or very limited power transmission, unconstrained power flows across a highly renewable pan-European electricity network significantly reduce the overall amount of required annual backup energy, but not necessarily the required backup capacities.
Conclusions:The reduction of the backup capacities turns out to be sensitive to the choice of export scheme. Results suggest that the synchronized export of local backup power to other countries is important to significantly save on installed backup capacities.