Biotin is a water-soluble vitamin that functions as a cofactor for biotin-dependent carboxylases. The biochemical and physiological roles of biotin in brain regions have not yet been investigated sufficiently in vivo. Thus, in order to clarify the function of biotin in the brain, we herein examined biotin contents, biotinylated protein expression (e.g. holocarboxylases), and biotin-related gene expression in the brain of biotin-deficient rats. Three-week-old male Wistar rats were divided into a control group, biotin-deficient group, and pair-fed group. Rats were fed experimental diets from 3 wk old for 8 wk, and the cortex, hippocampus, striatum, hypothalamus, and cerebellum were then collected. In the biotin-deficient group, the maintenance of total biotin and holocarboxylases, increases in the bound form of biotin and biotinidase activity, and the expression of an unknown biotinylated protein were observed in the cortex. In other regions, total and free biotin contents decreased, holocarboxylase expression was maintained, and bound biotin and biotinidase activity remained unchanged. Biotin-related gene (pyruvate carboxylase, sodium-dependent multivitamin transporter, holocarboxylase synthetase, and biotinidase) expression in the cortex and hippocampus also remained unchanged among the dietary groups. These results suggest that biotin may be related to cortex functions by binding protein, and the effects of a biotin deficiency and the importance of biotin differ among the different brain regions.