The synthesis of meso-diaminopimelic acid (m-DAP) in bacteria is essential for both peptidoglycan and lysine biosynthesis. From genome sequencing data, it was unclear how bacteria of the Chlamydiales order would synthesize m-DAP in the absence of dapD, dapC, and dapE, which are missing from the genome. Here, we assessed the biochemical capacity of Chlamydia trachomatis serovar L2 to synthesize m-DAP. Expression of the chlamydial asd, dapB, and dapF genes in the respective Escherichia coli m-DAP auxotrophic mutants restored the mutants to DAP prototrophy. Screening of a C. trachomatis genomic library in an E. coli ⌬dapD DAP auxotroph identified ct390 as encoding an enzyme that restored growth to the Escherichia coli mutant. ct390 also was able to complement an E. coli ⌬dapD ⌬dapE, but not a ⌬dapD ⌬dapF mutant, providing genetic evidence that it encodes an aminotransferase that may directly convert tetrahydrodipicolinate to L,Ldiaminopimelic acid. This hypothesis was supported by in vitro kinetic analysis of the CT390 protein and the fact that similar properties were demonstrated for the Protochlamydia amoebophila homologue, PC0685. In vivo, the C. trachomatis m-DAP synthesis genes are expressed as early as 8 h after infection. An aminotransferase activity analogous to CT390 recently has been characterized in plants and cyanobacteria. This previously undescribed pathway for m-DAP synthesis supports an evolutionary relationship among the chlamydiae, cyanobacteria, and plants and strengthens the argument that chlamydiae synthesize a cell wall despite the inability of efforts to date to detect peptidoglycan in these organisms.Chlamydophila ͉ meso-diaminopimelic acid biosynthesis ͉ peptidoglycan ͉ Nod1 ͉ pathway holes T he synthesis of meso-diaminopimelic acid (m-DAP) is crucial for survival of most bacteria. m-DAP is the direct precursor of lysine, an amino acid essential for protein synthesis. Furthermore, m-DAP and lysine play pivotal roles in peptidoglycan (PG) synthesis by cross-linking PG glycan chains to provide strength and rigidity to the PG (1). Plants also synthesize lysine via the m-DAP pathway (2, 3). In contrast, mammalian cells neither synthesize nor use m-DAP as a substrate in any metabolic pathway, and lysine is an essential amino acid that is obtained from dietary sources (4 -6). The absence of an m-DAP͞lysine synthesis pathway in mammalian cells makes the enzymes of the bacterial pathway attractive targets for antimicrobial therapy.m-DAP͞lysine synthesis comprises a branch of the aspartate metabolic pathway that also includes the synthesis of methionine, threonine, and isoleucine (Fig. 1). Common to the synthesis of all these amino acids is the conversion of L-aspartate to L-aspartate-semialdehyde via LysC and Asd (7,8). The first reaction unique to m-DAP͞lysine synthesis is the DapAcatalyzed condensation of L-aspartate-semialdehyde and pyruvate to generate dihydrodipicolinate, which is reduced subsequently by DapB to tetrahydrodipicolinate (THDP). Hereafter, we refer to the four-step synthesis of T...
The use of Bt proteins in crops has revolutionized insect pest management by offering effective season-long control. However, field-evolved resistance to Bt proteins threatens their utility and durability. A recent example is field-evolved resistance to Cry1Fa and Cry1A.105 in fall armyworm (Spodoptera frugiperda). This resistance has been detected in Puerto Rico, mainland USA, and Brazil. A S. frugiperda population with suspected resistance to Cry1Fa was sampled from a maize field in Puerto Rico and used to develop a resistant lab colony. The colony demonstrated resistance to Cry1Fa and partial cross-resistance to Cry1A.105 in diet bioassays. Using genetic crosses and proteomics, we show that this resistance is due to loss-of-function mutations in the ABCC2 gene. We characterize two novel mutant alleles from Puerto Rico. We also find that these alleles are absent in a broad screen of partially resistant Brazilian populations. These findings confirm that ABCC2 is a receptor for Cry1Fa and Cry1A.105 in S. frugiperda, and lay the groundwork for genetically enabled resistance management in this species, with the caution that there may be several distinct ABCC2 resistances alleles in nature.
Folates are tripartite molecules comprising pterin, para-aminobenzoate (PABA), and glutamate moieties, which are essential cofactors involved in DNA and amino acid synthesis. The obligately intracellular Chlamydia species have lost several biosynthetic pathways for essential nutrients which they can obtain from their host but have retained the capacity to synthesize folate. In most bacteria, synthesis of the pterin moiety of folate requires the FolEQBK enzymes, while synthesis of the PABA moiety is carried out by the PabABC enzymes. Bioinformatic analyses reveal that while members of Chlamydia are missing the genes for FolE (GTP cyclohydrolase) and FolQ, which catalyze the initial steps in de novo synthesis of the pterin moiety, they have genes for the rest of the pterin pathway. We screened a chlamydial genomic library in deletion mutants of Escherichia coli to identify the “missing genes” and identified a novel enzyme, TrpFCtL2, which has broad substrate specificity. TrpFCtL2, in combination with GTP cyclohydrolase II (RibA), the first enzyme of riboflavin synthesis, provides a bypass of the first two canonical steps in folate synthesis catalyzed by FolE and FolQ. Notably, TrpFCtL2 retains the phosphoribosyl anthranilate isomerase activity of the original annotation. Additionally, we independently confirmed the recent discovery of a novel enzyme, CT610, which uses an unknown precursor to synthesize PABA and complements E. coli mutants with deletions of pabA, pabB, or pabC. Thus, Chlamydia species have evolved a variant folate synthesis pathway that employs a patchwork of promiscuous and adaptable enzymes recruited from other biosynthetic pathways.
It is not currently possible to predict the probability of whether a woman with a chlamydial genital infection will develop pelvic inflammatory disease (PID). To determine if specific biomarkers may be associated with distinct chlamydial pathotypes, we utilized two Chlamydia muridarum variants (C. muridarum Var001 [CmVar001] and CmVar004) that differ in their abilities to elicit upper genital tract pathology in a mouse model. CmVar004 has a lower growth rate in vitro and induces pathology in only 20% of C57BL/6 mouse oviducts versus 83.3% of oviducts in CmVar001-infected mice. To determine if chemokine and cytokine production within 24 h of infection is associated with the outcome of pathology, levels of 15 chemokines and cytokines were measured. CmVar004 infection induced significantly lower levels of CXCL1, CXCL2, tumor necrosis factor alpha (TNF-α), and CCL2 in comparison to CmVar001 infection with similar rRNA (rs16) levels for Chlamydiae. A combination of microRNA (miRNA) sequencing and quantitative real-time PCR (qRT-PCR) analysis of 134 inflammation-related miRNAs was performed 24 h postinfection to determine if the chemokine/cytokine responses would also be reflected in miRNA expression profiles. Interestingly, 12 miRNAs (miR-135a-5p, miR298-5p, miR142-3p, miR223-3p, miR299a-3p, miR147-3p, miR105, miR325-3p, miR132-3p, miR142-5p, miR155-5p, and miR-410-3p) were overexpressed during CmVar004 infection compared to CmVar001 infection, inversely correlating with the respective chemokine/cytokine responses. To our knowledge, this is the first report demonstrating that early biomarkers elicited in the host can differentiate between two pathological variants of chlamydiae and be predictive of upper tract disease.
Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB) and/or transport (bioY). Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613) from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF). Type II ECFs are typically composed of a transport specific component (S) and a chromosomally unlinked energy module (AT). Intriguingly, Chlamydia lack recognizable AT modules. Using 3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module) and capacity (apparent K(m) of 3.35 nM and V(max) of 55.1 pmol×min−1×mg−1). Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT), which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s) would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin from the host cell into the bacterial cytoplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.