The functioning of the solar cells (and photoelectric phenomena in general) relies on the photo-generation of carriers in p–n junctions and their subsequent recombination in the quasi-neutral regions. A number of basic issues concerning the physics of the operation of solar cells still remain obscure. This paper reports on some unsolved basic problems, namely: a model of the recombination processes that does not contradict Maxwell’s equations; boundary conditions; the role played by space charges in the transport phenomena, and the formation of quasi-neutral regions under the presence of nonequilibrium photo-generated carriers. In this work, a new formulation of the theory that explains the underlying physical phenomena involved in the generation of a photo-e.m.f. is presented.