The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies Haring, M.A.; Rommens, C.M.T.; Nijkamp, H.J.J.; Hille, J.
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
AbstractThis review compares the activity of the plant transposable elements Ac, Tam3, En/Spm and Mu in heterologous plant species and in their original host. Mutational analysis of the autonomous transposable elements and two-element systems have supplied data that revealed some fundamental properties of the transposition mechanism. Functional parts of Ac and En/Spm were detected by in vitro binding studies of purified transposase protein and have been tested for their importance in the function of these transposable elements in heterologous plant species. Experiments that have been carried out to regulate the activity of the Ac transposable element are in progress and preliminary results have been compiled. Perspectives for manipulated transposable elements in transposon tagging strategies within heterologous plant species are discussed.