We investigate the traveling wave solutions and their bifurcations for the BBM-likeB(m,n)equationsut+αux+β(um)x−γ(un)xxt=0by using bifurcation method and numerical simulation approach of dynamical systems. Firstly, for BBM-likeB(3,2)equation, we obtain some precise expressions of traveling wave solutions, which include periodic blow-up and periodic wave solution, peakon and periodic peakon wave solution, and solitary wave and blow-up solution. Furthermore, we reveal the relationships among these solutions theoretically. Secondly, for BBM-likeB(4,2)equation, we construct two periodic wave solutions and two blow-up solutions. In order to confirm the correctness of these solutions, we also check them by software Mathematica.