Intelligent inorganic nanoparticles were designed and produced for use in imaging and annihilating tumour cells by radio-frequency (RF) hyperthermia. Nanoparticles synthesised to provide RF hyperthermia must have magnetite properties. For this purpose, magnetite nanoparticles were first synthesised by the coprecipitation method (10-15 NM). These superparamagnetic nanoparticles were then covered with gold ions without losing their magnetic properties. In this step, gold ions are reduced around the magnetite nanoparticles. Surface modification of the gold-coated magnetic nanoparticles was performed in the next step. A self-assembled monolayer was created using cysteamine (2-aminoethanethiol) molecules, which have two different end groups (SH and NH 2 ). These molecules react with the gold surface by SH groups. The NH 2 groups give a positive charge to the nanoparticles. After that, a monoclonal antibody (Monoclonal Anti-N-CAM Clone NCAM-OB11) was immobilised by the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide method. Then, the antenna RF system (144.00015 MHz) was created for RF hyperthermia. The antibody-nanoparticle binding rate and cytotoxicity tests were followed by in vitro and in vivo experiments. As the main result, antibody-bound gold-coated magnetic nanoparticles were successfully connected to tumour cells. After RF hyperthermia, the tumour size decreased owing to apoptosis and necrosis of tumour cells.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.