2016
DOI: 10.1016/j.jcss.2015.06.008
|View full text |Cite
|
Sign up to set email alerts
|

Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs

Abstract: Please cite this article in press as: F. Wei-Kleiner, Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs, J. Comput. Syst. Sci. (2015), http://dx. Highlights• We propose an indexing scheme for efficient graph query processing.• We introduce a decomposition algorithm which works for all graphs.• We design query answering algorithms for shortest path and kNN. AbstractWe propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) pr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(2 citation statements)
references
References 30 publications
0
1
0
1
Order By: Relevance
“…Berbagai macam metode optimasi sistem pengangkutan telah dilakukan oleh peneliti sebelumnya, antara lain menggunakan metode yang berdasarkan sistem informasi geografis (Hidayat, 2013;Ridha et al, 2016), metode tabu search. Metode nearest neighbour sendiri telah banyak diaplikasikan untuk menyelesaikan permasalahan pengangkutan sampah, baik untuk kasus di luar negeri (Du & He, 2012;Li et al, 2019;Wei-Kleiner, 2016;Yu et al, 2016), maupun di Indonesia (Hermawan, 2018;Rahma et al, 2020).…”
Section: Pendahuluanunclassified
“…Berbagai macam metode optimasi sistem pengangkutan telah dilakukan oleh peneliti sebelumnya, antara lain menggunakan metode yang berdasarkan sistem informasi geografis (Hidayat, 2013;Ridha et al, 2016), metode tabu search. Metode nearest neighbour sendiri telah banyak diaplikasikan untuk menyelesaikan permasalahan pengangkutan sampah, baik untuk kasus di luar negeri (Du & He, 2012;Li et al, 2019;Wei-Kleiner, 2016;Yu et al, 2016), maupun di Indonesia (Hermawan, 2018;Rahma et al, 2020).…”
Section: Pendahuluanunclassified
“…Let us assume a set S of points in a space M and a query point p  M. The nearest-point search (NPS) aims to find the point in S being the closest to p. In its most common form, M is a d-dimensional vector space (2-D in this paper), points correspond to their position vectors, and closeness is expressed with Euclidean distance. Applications can be found in a variety of domains, such as computational geometry [2,20], geographic information systems -GIS [18], bioinformatics [21], image and video compression [3, pattern recognition [16], computer vision [12], robot motion planning [14] ], telecommunications [9], and computer graphics [6]. There are a number of versatile generalizations where the distance metric between spatial points is extended to any quantitative measure of similarity between two generic objects, as one may also measure closeness of pairs of polygons, text strings, images, audio sequences etc.…”
Section: Introductionmentioning
confidence: 99%