2013
DOI: 10.3390/rs5052113
|View full text |Cite
|
Sign up to set email alerts
|

Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

Abstract: Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

9
284
1
25

Year Published

2013
2013
2021
2021

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 414 publications
(319 citation statements)
references
References 57 publications
9
284
1
25
Order By: Relevance
“…Uma abordagem frequente é estabelecer tendências por meio de regressão linear do NDVI, calculado em períodos anuais ou sazonais (Jong & Bruin, 2012;Forkel et al, 2013). A regressão linear é um teste paramétrico que pode apresentar, entretanto, dificuldades na caracterização de tendências, referentes à capacidade de se determinar o quanto o coeficiente de declividade da reta ajustada difere significativamente de zero.…”
Section: Introductionunclassified
“…Uma abordagem frequente é estabelecer tendências por meio de regressão linear do NDVI, calculado em períodos anuais ou sazonais (Jong & Bruin, 2012;Forkel et al, 2013). A regressão linear é um teste paramétrico que pode apresentar, entretanto, dificuldades na caracterização de tendências, referentes à capacidade de se determinar o quanto o coeficiente de declividade da reta ajustada difere significativamente de zero.…”
Section: Introductionunclassified
“…There are several methods described in the literature for time series analysis of satellite imagery [12,13,20]. The simplest and most common method is the ordinary least-squares (OLS) regression, where the main assumption is that the land surface is changing linearly and gradually over time [44].…”
Section: Trend Analysismentioning
confidence: 99%
“…In comparison to the full-resolution time series, the use of annually aggregated data reduces the number of observations, which results in the underestimation of the trend significance. Nevertheless, annual aggregation decreases the risk of detecting false positive trends [12]. Furthermore, the aggregation is an effective method to account for autocorrelation: dependence between successive observations in a time series [50].…”
Section: Trends Of Ndvi Seriesmentioning
confidence: 99%
See 1 more Smart Citation
“…For temporal downscaling, the mean, trend, seasonal, and interannual values from 287 modern data for the study area are used to generate monthly values with a modified version of 288 the greenbrown package (Forkel et al, 2013;Forkel and Wutzler, 2015) in R. 289 R code for the procedures detailed below, with reference to the data sources described 290 in Section 3.1 and Table 2, is available in the supplementary online material. 291…”
mentioning
confidence: 99%