Abstract:With the fast development of the economy and expansion, a large number of people have concentrated in Beijing over the past few decades, leading to the result that Beijing has become home to one of the most complex mixtures of aerosol types in the world. The various aerosol types play different roles in the determination of global climate change, visibility, and human health. However, to the best of our knowledge, research has rarely analyzed the correlation between aerosol types and air quality index (AQI) in Beijing (urban and suburban) over a long-term series of observations. Therefore, in this study, we aim to identify and discuss the different aerosol types and AQI in Beijing from 2004 to 2015. The aerosol types are classified into six categories: dust, mixed, highly-absorbing, moderately-absorbing, slightly-absorbing, and scattering by a multiple clustering method with the fine mode fraction (FMF) and single scattering albedo (SSA) data of retrievals from the global Aerosol Robotic Network (AERONET) sun photometer sites. The AQI levels: are good (0-50); moderate (51-100); unhealthy for sensitive groups (101-150); unhealthy (151-200); very unhealthy (201-300); and hazardous (>300). The results show that a significant FMF variability occurred among different seasons in Beijing, with maximum values present in spring and minimum values in winter. The SSA values exhibit variation, with small fluctuations from season to season. In the case of BJ station, the scattering aerosols are more frequent in summer (39%) and less in winter (1%), while the coarse particles (dust) are more frequent in spring (18%) and less in autumn (6%). In contrast, the absorbing aerosols (especially slightly-absorbing) are more frequent in summer (35%) and winter (15%). However, the mixed aerosol types are more frequent in spring (38%) and less in summer (8%). There is a similar seasonal variation in XH. In the past 12 years, the slightly-absorbing aerosol type in Beijing has increased by approximately 14%, which is believed to be due to the rapid development of industrial cities. In addition, comparing the urban and suburban regions, the slightly-absorbing aerosol type is the dominant aerosol type in both areas. Furthermore, to identify the dominant aerosol types which lead to air pollution, a related analysis was carried out by analyzing different aerosol types and the relationship between aerosol types and AQI. The results indicate that the air pollution was strongly correlated to slightly-absorbing aerosols, in which the percentage of slightly-absorbing aerosols was about 49% during the hazardous days in 2013-2015, and the correlation between AQI and aerosol types is also strong (R 2 = 0.76 and 0.97, in Beijing and Xianghe).