[1] We report the first empirical quantification of the relation between winter-spring loss of Arctic ozone and changes in stratospheric climate. Our observations show that $15 DU additional loss of column ozone can be expected per Kelvin cooling of the Arctic lower stratosphere, an impact nearly three times larger than current model simulations suggest. We show that stratospheric climate conditions became significantly more favorable for large Arctic ozone losses over the past four decades; i.e., the maximum potential for formation of polar stratospheric clouds increased steadily by a factor of three. Severe Arctic ozone loss during the past decade occurred as a result of the combined effect of this long-term climate change and the anthropogenic increase in stratospheric halogens.
Large particles containing nitric acid (HNO3) were observed in the 1999/2000 Arctic winter stratosphere. These in situ observations were made over a large altitude range (16 to 21 kilometers) and horizontal extent (1800 kilometers) on several airborne sampling flights during a period of several weeks. With diameters of 10 to 20 micrometers, these sedimenting particles have significant potential to denitrify the lower stratosphere. A microphysical model of nitric acid trihydrate particles is able to simulate the growth and sedimentation of these large sizes in the lower stratosphere, but the nucleation process is not yet known. Accurate modeling of the formation of these large particles is essential for understanding Arctic denitrification and predicting future Arctic ozone abundances.
[1] Measurements of BrO suggest that inorganic bromine (Br y ) at and above the tropopause is 4 to 8 ppt greater than assumed in models used in past ozone trend assessment studies. This additional bromine is likely carried to the stratosphere by short-lived biogenic compounds and their decomposition products, including tropospheric BrO. Including this additional bromine in an ozone trend simulation increases the computed ozone depletion over the past $25 years, leading to better agreement between measured and modeled ozone trends. This additional Br y (assumed constant over time) causes more ozone depletion because associated BrO provides a reaction partner for ClO, which increases due to anthropogenic sources. Enhanced Br y causes photochemical loss of ozone below $14 km to change from being controlled by HO x catalytic cycles (primarily HO 2 +O 3 ) to a situation where loss by the BrO+HO 2 cycle is also important. Citation: Salawitch, R. J.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.