The pure rotational spectrum of the ZnSH (X̃A') radical has been measured using millimeter-wave direct absorption and Fourier transform microwave (FTMW) methods across the frequency range 18-468 GHz. This work is the first gas-phase detection of ZnSH by any spectroscopic technique. Spectra of the ZnSH,ZnSH, and ZnSD isotopologues were also recorded. In the mm-wave study, ZnSH was synthesized in a DC discharge by the reaction of zinc vapor, generated by a Broida-type oven, with HS; for FTMW measurements, the radical was made in a supersonic jet expansion by the same reactants but utilizing a discharge-assisted laser ablation source. Between 7 and 9 rotational transitions were recorded for each isotopologue. Asymmetry components with K = 0 through 6 were typically measured in the mm-wave region, each split into spin-rotation doublets. In the FTMW spectra, hyperfine interactions were also resolved, arising from the hydrogen or deuterium nuclear spins of I = 1/2 or I = 1, respectively. The data were analyzed using an asymmetric top Hamiltonian, and rotational, spin-rotation, and magnetic hyperfine parameters were determined for ZnSH, as well as the quadrupole coupling constant for ZnSD. The observed spectra clearly indicate that ZnSH has a bent geometry. The r structure was determined to be r = 2.213(5) Å, r = 1.351(3) Å, and θ = 90.6(1)°, suggesting that the bonding occurs primarily through sulfur p orbitals, analogous to HS. The hyperfine constants indicate that the unpaired electron in ZnSH primarily resides on the zinc nucleus.