A graph is said to be NSSD (=non-singular with a singular deck) if it has no eigenvalue equal to zero, whereas all its vertex-deleted subgraphs have eigenvalues equal to zero. NSSD graphs are of importance in the theory of conductance of organic compounds. In this paper, a novel method is described for constructing NSSD molecular graphs from the commuting graphs of the H v -group. An algorithm is presented to construct the NSSD graphs from these commuting graphs.